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The two-dimensional one-component plasma at I' = 2: 
metallic boundary 
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National University, Canberra, ACT 2601, Australia 

Received 3 September 1984, in final form 6 December 1984 

Abstract. The two-dimensional one-component plasma near a metal wall is exactly solvable 
at a special value of the coupling constant. We calculate the grand canonical partition 
function and correlation functions in strip geometry along the interface. By taking the 
strip width to infinity we obtain the exact statistical mechanics of a model of the metal- 
electrolyte boundary. Sum rules are discussed. 

1. Introduction 

The simplest model of a Coulomb system is the one-component plasma (OCP): N 
mobile particles of charge q immersed in a neutralising background charge density. 
The two-dimensional version (logarithmic potential), at the special value of the coupling 
constant r = q2/  k,T = 2, has the feature of being exactly solvable for a variety of 
different boundary conditions (Jancovici 1982a, Smith 1982, Rosinberg and Blum 1984, 
Alastuey and Lebowitz 1984). 

One such instance is the ideally polarisable interface of Rosinberg and Blum (1984). 
This model consists of two OCPS of different background densities separated by an 
impermeable membrane. Despite the idealisations inherent in the model, it has the 
virtue of reproducing from a microscopic description some of the main features of the 
metal-electrolyte boundary. In particular, one deduces that the natural external vari- 
able of the system is the potential drop. This is contrary to the case of electrolytes 
near dielectric boundaries where the excess surface charge is the external variable. 

In this paper further exactly solvable cases of the two-dimensional OCP at r = 2 
are presented. We consider an explicit model of the metal-electrolyte boundary where 
the image forces induced by the conductor are written down in the Hamiltonian. The 
grand canonical partition function and distribution functions are first calculated for 
the plasma confined to strip of width W separted from the metal boundary by a 
distance E.  Also present inside the strip is a uniform background of variable charge 
density -97 (the feature that the background charge density is variable instead of 
being fixed by charge neutrality is unique to the metallic boundary conditions). The 
two-dimensional model of the metal-electrolyte boundary is then obtained by taking 
the strip width to infinity. 

In the strip geometry we can choose the background charge density to be equal to 
zero and take W + 00, permitting only a finite number of particles per unit length of 
the metal interface. We then obtain a model of bare charges confined in the vicinity 
of a metal interface by image forces. 

0305-4470/85/091419 + 16$02.25 0 1985 The Institute of Physics 1419 
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2. Evaluation of the grand canonical partition function and N-particle correlations 

2.1. The Hamiltonian 

Two distinct geometries have been used in the exact calculations involving boundaries 
presented so far. The first and most used has been the disc, which in the exactly 
solvable cases allows integrations in the angular direction to be performed very easily 
(all references given in 0 1 use the disc geometry). One is then left with a product of 
decoupled integrals in the radial direction, and the behaviour of these integrals in the 
thermodynamic limit is determined using Laplace’s method. A second approach is to 
use semiperiodic boundary conditions (Choquard 1981, Choquard et al 1983). This 
again allows integrations in one direction to be performed very easily and again leaves 
us with a product of decoupled integrals. However, the integrals are such that determin- 
ing their asymptotic behaviour requires no further manipulation, which is thus a 
simplification over the use of disc geometry. (In the formulation of Choquard et a1 
(1983) it was necessary to order the integrations in the direction perpendicular to the 
periodic boundary conditions. This can be avoided as we will show here.) 

Suppose that a perfect conductor occupies the half-plane x < 0 in the xy plane. 
Let N particles of charge q occupy the rectangle E < x < W + E ,  0 < y < L, and impose 
periodic boundary conditions in the y direction. Further suppose that the rectangle 
is filled with a uniform background of charge density -977 (this background is not a 
neutralising background, but one independent of the N charges). The pair potential 
consists of a particle-particle and a particle-image term. We have (Choquard er a1 1983) 

4 ( ~ ,  x’) = log[{2~0sh[ ( 2 ~ /  L)(x - x’)] - 2 COS[ ( 2 ~ /  L)(y - y’)]} (L/2r)’J 

+ f q  l0g[[{2 C O S ~ [ ( ~ V / L ) ( X  + x’)] - 2 C O S [ ( ~ V / ~ ) ( ~  -y’)]}( L /2~) ’1  (2.1) 

where 

x = (4 Y 1, x’ = (x’, y‘ ) .  (2.2) 

The constants in the terms corresponding to the particle-particle and particle-image 
interactions have been chosen so that in the limit L + cc these terms reduce to 

-fq log[ (x  - x y +  (y - y ’)’I and - f q  log[(x+x‘)’+(y-y’)2] (2.3) 

respectively. 

self-energies) 
Using (2.1) to compute the Hamiltonian H we find (taking special care of the 

+ f q 2 N  l o g ( L / 2 ~ )  

where 
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2.2. The grand canonical partition function and distribution functions in the jn i t e  system 

In general the grand canonical partition function is defined as 
03 

z = lNl&,o 
N = O  

and the distribution functions (in the grand canonical ensemble) are given by 

where 

and 5 denotes the activity. 

expressions for the quantities (2.6) and (2.7) when H is given by (2.4) and kBT by 
Using an integration procedure due to Gaudin (1966) we can obtain tractable 

q2 /  kB T = 2. (2.9) 

Inserting (2.4) and (2.9) in (2.8) we have 

where 
A = exp[.rrq2L( -3 W3 - 2~ W')] 

E = (2.rr/L) e x p ( - 2 ~ q ~ ' )  

(2.10) 

(2.1 1) 

(2.12) 

f(x,)=exp{-2.rrq[x:-2( W+E)X,]+~TX, /L)  (2.13) 

However, C(zj  is the Cauchy double altemant. Thus 

c ( Z )  =det[( 1 - z j z : ) - ' ] N  

= c E ( P )  n (1  -Z ,Z*p(J l  
P =  I I = I  

(2.14) 

(2.15) 

where E ( P )  denotes the parity of the permutation P. Substituting (2.5) for zI  in (2.15) 
and then Taylor expanding the denominator we have 

N !  W N  

C ( Z )  = c c n e x P [ - 2 . r r ( x l + x P ( l , ) ~ l I ~ l  exP[-2.rri(Yl -YP(l))al/Ll 
P =  I a,,....u,w'o I = I  

N 

= f f n e x p [ - 2 . r r x p c l , ( a p , l ) + a l ) / ~ ~  
U,. ..., a N 2 O  P = l  I =  I 

-XexP[-2.rriYP(l)(a P(I) - nr)/Ll 
a2 

= de t [ exp[ -2 . r rx j (a j+ak) /L]  
a , ,  ..., "20 

xexp[-2.rriyj(aj - ak)/L]]N. (2.16) 
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Substituting (2.16) in (2.10) we can perform they  integrations row-by-row to obtain 

(2.17) 

where for each k = 1,2 , .  . . , N 

g,k=f(X]) e x p [ - 2 . n x , ( a , + a k ) / L ] e x p [ - 2 . n i y , ( a , - a k ) / L ]  j =  1,2 , .  . ., n (2.18) 

(2.19) 

where 6 denotes the Kronecker delta. We observe that if a,  = a b  for any 1 S a, b S N 
( a  # b) in (2.17) then either the ath row and bth rows are identical, or the ath column 
and bth columns are identical. Thus the only non-zero contribution in (2.17) from the 
rows n + 1 S j  s N comes from the diagonal entries. Hence, after expanding out those 
terms we have 

J =  n + l , .  . . , N ) dxf(x)  eXp[-2.nX(a1 + (Yk)/L] 
gik = sa,,ai (1:'" 

iN," = A E ~ L ~ - "  c det[g,kln 
a,, .o,=o 

x c fi (1 W + E  dxf(x)  exp( -4.rrxa,/ L ) )  . (2.20) 
O S O " + , <  < a , / = n + l  p 

From (2.20) we obtain the result that IN." is the coefficient of lN  in the power-series 
expansion of the function 

A(cB)n fi (1 + 
E 

dxf(x)  exp( -4.nxll L )  
j'E+w 

I = O  

x al. 1 ,a,,=o I = l  
[ f i ( l + { L E { F + w  F dxf( x )  exp( -4.rrxa11 L ) )  - I ]  

det[g/kl* (2.21) 

But from (2.6) IN,o is the coefficient of l N  in the function E. Hence equating (2.21) 
with n = 0 to (2.6) we have 

(2.22) 1 dxf( x )  exp( -4.rrxll L )  
I=O @= ( lYK' L = = A n  1+lLE 

where A, E and f ( x )  are specified by (2.1 l ) ,  (2.12) and (2.13), respectively. 

expression is the n-particle distribution function. Thus, after noting 
If we divide (2.21) with n 3 1 by (2.22) and compare with (2.7) we see the resulting 

det[g/kln = det[a/kln (2.23) 

where 

q k  =f(x,)  exp[-2.rr(xl+~k)aJL1 exp[-2.rri(y1 -yk)a,lL1, (2.24) 

we have 

P n ( X 1 , .  . . , Xn) = det[hJkln (2.25) 

where 

d x f ( x )  exp(-4.nxal/ L )  (2.26) 
F 

m E +  w 
h / k =  I = O  Bca/k( 1+lLB 5 
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2.3. The large-L limit 

In the limit L +  CO the periodic boundary conditions recede to infinity, and we obtain 
the statistical mechanics of an infinite strip (in length) of width W, separted from a 
metal wall by a distance E. 

Note that the boundary conditions are inhomogeneous, there being a metal wall 
on one side of the container and a hard wall on the other, which implies the pressure 
is anisotropic. The force per unit length exerted by the system on the wall closest to 
the metal boundary will be different from that exerted on the other wall. Thus the 
usual expression for the pressure of a two-dimensional system 

( L  w)-’ log( E) ( 2 . 2 7 )  

is not applicable, since it assumes homogeneous boundary conditions. 
If the strip width was taken to zero we could define the pressure p as 

p p  = Iim L-’  log(Z) ( 2 . 2 8 )  
L - a  

where, as usual, p = l/kBT. For the system with non-zero width we calculate ( 2 . 2 8 )  
and call p the one-dimensional pressure. It represents the force the system exerts at 
one end of the strip. We have from ( 2 . 2 2 ) ,  after noting that the sum resulting from 
taking the logarithm tends to a Riemann integral, 

T3/’5 +31m d t  log( l + - e ~ p ( t ~ - Z ~ ~ t ) ( e r f ( t + ~ W ) - e r f ( t ) )  
K -w* K 

Here we have introduced the notation 

erf(x) =--= exp(-t2) dt JT I: ( 2 . 3 0 )  

and 

K = (2T77)’”.  ( 2 . 3 1 )  

Furthermore, in the limit L + CO, 

Substituting ( 2 . 3 2 )  into ( 2 . 2 5 )  give the n-particle distribution functions in the limit 
L + w .  

In defining the potential ( 2 . 1 )  we have set the arbitrary length scale L‘ of the 
two-dimensional Coulomb potential equal to one. Keeping L‘ arbitrary merely has 
the effect of replacing 5 in the above working by t / L ’ .  Thus we see the integrals in 
( 2 . 2 9 )  and ( 2 . 3 2 )  are dimensionless. 
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3. Zero background charge density-charges near a metal wall 

3.1. Thermodynamics 

If we choose 7 = 0 in the preceding results we obtain the statistical mechanics of 
charged particles in the vicinity of a metal interface. From (2.1) the pair potential for 
large distances r along the interface behaves as l / r2 .  Thus in a strip of finite width 
W the potential is integrable and the system thus has well behaved thermodynamics. 
In particular the Mayer series and virial series are convergent for small enough activities 
and densities, respectively. 

From (2.29) we have when 7 = 0 and = 2 

and hence the linear density (i.e., the number of particles per unit length of the strip) 

The expansion of (3.2) as a power series in 5 is known as the Mayer series. The radius 
of convergence is obvious from the integral representation (3.1). Denote 

Then the Mayer series converge for all 5 such that 

1 
I 51 < (;) (3.4) 

where L’ is the arbitrary length scale discussed in § 2.3. 

hence by substituting into the Mayer series deduced from (3.1) the virial expansion 
From (3.2) we can readily calculate 5 as a function of p to second order, and 

r exp( - 2 t ~ /  W ) (  1 - exp( - t ) ) ’ /  t 2  

[j: dt  exp(-tE/ W)( l  -exp(-t))/t]’ 
p p  = p + 2 T w (E cl ( 3 . 9  

In (3.1) and (3.2) WG can take the strip width W to infinity provided we hold the 
linear density p constant. We have 

I 
p =g J d t  e x p ( - t ) / [ ( t / ~ ~ ) + 2 ~  exp(-t)]. (3.7) 

0 

Clearly (3.6) and (3.7) are not analytic functions of 5 at l=O. This is not surprising, 
since in the direction perpendicular to the interface the potential behaves logarithmi- 
cally, and thus is not integrable in the half-plane domain. 

Integrating (3.6) by parts and using (3.7) we see 
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Solving (3.9) for p substituting into (3.8) we obtain 

Pp -P  + f ( C L )  a s p - 0  (3.10) 

where f is a non-analytic function of p at p =0, vanishing at that point along with 
all of its derivatives, and has the property 

- 0. lim+ - - 
P+O p 

f ( P )  (3.1 1 )  

From (3.10) and (3.11) we see that the ideal-gas law is obeyed in the limit of zero 
density, but that the next-order correction term has an essential singularity at zero 
density, with all derivatives vanishing. 

3.2. Correlation functions 

From (2.25) and (2.32) the one- and two-particle distribution functions with zero 
background charge density in the strip of width W are 

(3.12) 

(3.13) 

From (3.12) and (3.13) we deduce the asymptotic behaviour of the two-particle 
correlation along the interface: 

asy-m.  (3.14) 

The l,ly2 decay is in agreement with the general expectation that for integrable potentials 
the two-particle correlation will decay asymptotically as some multiple of the potential. 

The correlation functions obey a sum rule applicable to compressible gases (Gaudin 
1966) : 

(3.15) 

Recall one-component Coulomb systems without metallic boundary conditions are 
incompressible (Lieb and Narnhofer 1975), in which case the left-hand side of (3.15) 
is zero. The resulting sum rule is then known as the perfect screening sum rule. 

Next consider the case W-m. From (3.12) 
given by 

dt  exp( -2xt/ E )  

and the two-particle correlation given by (3.13). 

p l (x) -  1 / 4 r x 2  X-m 

we have the one-particle correlation 

(3.16) 

This gives the asymptotic behaviour 

(3.17) 
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1 xI ,  x2 + 03 and/or y + W. (3.18) 
7T2[(XI +XJ2+Y2l2 P:(x) - - 

The correlations again obey the sum rule (3.15). They also obey the dipole moment 
sum rule (Blum et a1 1981) 

(3.19) 

The fact that the correlations obey the dipole moment screening sum rule but not 
the perfect screening sum rule is anticipated by an obvious generalisation of an argument 
due to Jancovici (1982b). In a Coulomb system with image forces one must consider 
not just the charge-charge correlation (which we term the charge-screening cloud) 

CT(X,, ~ 2 ; y ~ = q P l ~ ~ l ~ ~ ~ ~ l - ~ 2 ~ ~ ~ Y ~ + ~ 2 P : ~ ~ l ,  x2;y) (3.20) 

in the actual system, but also the induced charge-charge correlation in the dielectric 
medium due to the image forces. In the case of a metallic boundary, the induced 
charge-screening cloud is equal in magnitude but opposite in sign to the charge- 
screening cloud in the system itself. Thus the (modified) perfect screening sum rule 
which requires 

IFXdx2 1 --CO d y C T ( ~ l , ~ 2 ; y ) + [ - E  -cc dx, 1 -a2 dyCT(x1,x2;y)=O (3.21) 
X a) 

is always obeyed since 

CT(Xl, x2; y)  = -CT( XI, -x2; Y). (3.22) 

However the dipole moment sum rule (3.19), which must hold in two-dimensional 
Coulomb systems whenever the correlations decay faster than l / r3  in all directions 
(Blum er al 1981), is unaltered, by the same argument. Since both the monopole and 
dipole moments of the total charge-screening cloud vanish, the quadrupole moment 
must vanish by symmetry. Higher-order moments are not defined since the correlations 
only decay as l / r4 .  

It is of some interest to compare the preceding results for the correlation functions 
in the half-plane with those obtained for a similar system by Jancovici (1984). Jancovici 
obtained the one- and two-particle correlations of two-dimensional charges attracted 
to an excess surface charge at r = 2. Since the system is neutral overall, there is only 
a finite number of particles per unit length of the interface, as is the case here. The 
correlations obeyed the usual perfect screening sum rule (since there are no image 
forces) and the dipole moment sum rule. Furthermore the asymptotic behaviour of 
the correlations was found to be precisely that given by (3.17) and (3.18) (excluding 
the y direction in (3.18)). 

A plot of the density profile (3.16) for p =0.2, E =0.1 is given in figure 1. (To 
compute p I  from (3.16) it is first necessary to compute 5 from (3.7), which is specified 
from the values of E and p.)  

4. The metal-electrolyte boundary 

4.1. Thermodynamics 

We now want to take the limit W + CO with the background charge density 7 non-zero. 
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X 

Figure 1. Density profile of charges near a metal wall. 

However, first we consider the thermodynamics of the resulting system-the metal- 
electrolyte boundary-for general r. 

Recall that in the grand canonical formalism the free energy per volume + is given 
by 

,L3* = p log( 5) - log( E)/ L w. (4.1) 

Suppose we take L+m. Now consider the system for W large but finite. For a 
one-component Coulomb system of background charge density qv we must have 

U P V + W  (4.2) 

where q a  denotes the excess surface charge. However, in the grand canonical ensemble 

p = 5 a(log(E)/Lw)/ag. (4.3) 

(4.4) 

Define g and g, by 

L-m lim log(E)/LW- -p(g+g, /  W). 

Then from (4.2), (4.3) and (4.4) we have 

5 d(Pg)lJS = -77 

and 
(4.5) 

5 @g,)/Jt = -U. (4.6) 

w-77 Iog(l)+Pg+ w-'(Pgs+Ulog(5H (4.7) 

Pfs = U log (5) + Pgs. (4.8) 

Substituting (4.2) and (4.4) into (4.1) we have 

so that the surface free energy per unit length of the interface fs is given by 

Taking the partial derivative of (4.8) with respect to U and using the sum rule (4.6) 
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we immediately deduce 

a(PL)/au = log(5). (4.9) 

The surface tension y is defined by 

Y = (aF/dA),,T,”,, (4.10) 

where F is the total free energy of the system, A is the area of the interface, V the 
volume and Q the surface charge. But F =  F ( A ,  u ( A ) )  where U =  Q/qA, so using 
(4.6) in (4.10) we have 

Y = g*. (4.1 1) 

A further application of (4.6) gives 

5 arla5 = -a lp .  (4.12) 

Let us now calculate g and g, (and thus, from (4.6), U )  at r = 2. From (2.28) and 
(2.29), after breaking the range of integration in (2.29) into two parts, one on [0, CO) 

and the other on [ - K  W, 01, we find 

Pg = -77 w 2 d ( 1 / 2 7 7 ) ” 2 1  (4.13) 

Pgs= -3( j o a d t  log ( 1  + ~ e x p ( t ~ - 2 t ~ ~ )  7T3125  erfc(t) 
K 

+/omdtlog[  1+(-exp(t2+2t~&)(1+erf(t))  2 / 2 5  

K 

) - (4/7r1’*) lom d t  t exp(-t’)/( 1 + erf( t ) )  (4.14) 

where erfc( t )  denotes the complementary error function, erfc( t )  = 1 - erf( t ) .  From 
(4.6) and (4.14) we have 

exp[( t - E K  )2] erfc( t )  T 3 / 2  a 

U = - ? [ ( ~ ~ X ~ [ - ( K & ) ’ ] )  K K 5 dr 1 + ( T ~ ” ~ / K )  e x p ( t ’ - 2 ~ ~ t )  erfc(t) 

(4.15) 
1 

- Ioa d t  1 + ( 7 r 3 / 2 5 / K )  exp(t2-t 2K&t)(l +erf(t))  

Substituting (4.13) into (4.7) and taking the limit W+co we obtain 

P+ = -77 log[2.rr(1/277)1’21, (4.16) 

which is identical to the bulk free energy per unit volume of the two-dimensional OCP 
at r = 2 with hard-wall boundary conditions (Alastuey and Jancovici 1981). 

Note that for a one-component Coulomb system the bulk free energy I,!I is dependent 
only on the fixed background density 7 and the coupling constant r so that + = t,b( 7, r). 
The usual thermodynamic equation 

PP = 77 log(5) - P+ (4.17) 

where P denotes the bulk pressure is not applicable since for the metal-electrolyte 
boundary 5 is a surface variable independent of the bulk particle density p = 77. 
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By defining the bulk pressure as 

P = - a F / a V  (4.18) 

where F denotes the total free energy ( F  = V+) we regain the known result at r = 2 
(Alastuey and Jancovici 1981): 

pp = q( 1 - $). (4.19) 

4.2. Interpretation of the activity 

Note from (4.2) that in the limit W + a we have p = q so the activity 5 does not change 
the bulk density. However, from (4.15) varying 5 does change the surface charge U. 

In experimental electrochemistry variations in U are made by varying the potential 
drop A 4  between the two metal electrodes (in our situation one of the metal electrodes 
is at infinity). Hence for our exactly solvable model to mimic the real metal-electrolyte 
boundary we require 5 to be related to the potential drop. 

To show that this is indeed the case we must consider the correlation function 
p.,(x). From (2.25) and (2.31) the one-particle density in the limit W +  a with non-zero 
background charge density qq is 

d t  exp( -2KXt) 
--c13 I + ( T ~ ” ~ / K )  e x p ( t Z - 2 ~ & t )  erfc(t)’ 

p,(x) = 5~ exp[-K2(x - (4.20) 

Note we can use (4.20) as an independent check on (4.15), since by definition 

(4.21) 

To compute the integral (4.21) we introduce a convergence factor exp(-8x) and 
consider the ranges t E [0, a), t E (-co, 01 of (4.20) separately. We reclaim (4.15). 

Using an integration technique similar to that used to compute (4.20), we find for 
the potential drop 

= ~qlog[7r5(2/q)”21-aq. (4.22) 

At 
in P 3.1) is given by 

= 2 we know the bulk chemical potential p (not to be confused with the p. defined 

p.p = -log[ 7r( 2/ 7)’/2] + f. (4.23) 

Substituting (4.23) into (4.22) we have at r = 2  

5 = exP[P(F + @+)I. (4.24) 

We expect this relationship to be true in general for OCPS near metal boundaries. 
Using (4.1 5) and (4.24) we can calculate the differential capacity 

C = a( qa)/aA4. (4.25) 
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In figure 2 we plot C as a function of A4/ q for K = 1, E = 1. The curve is not symmetrical 
about the C axis since negative AC#J corresponds to an excess of uniform background 
while positive A 4  corresponds to an excess of mobile point charges, the latter being 
easier to obtain energetically. 

I 

-10 - 5  0 5 10 

A Q  I q  

Figure 2. The differential capacity C as a function of the potential drop per charge A @ / q .  

In figure 3 we plot p l ( x )  for K = 1,  E = 1 and the three values of the surface excess 
m = -0.1, 0 and 0.1, 

I 0 1  1 0  2 0  

X 

Figure 3. Density profile of the metal-electrolyte boundary for three different values of 
the surface excess 0. 
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4.3. Sum rules 

The metal-electrolyte boundary (MEB) of this paper is compared with the ideally 
polarisable interface ( IPI )  of Rosinberg and Blum (1984) by considering the sum rules 
satisfied by the two systems. 

First consider the MEB. Using the conjecture (4.24) we deduce from (4.9) the sum 
rules for general I’: 

ah/a(+ = P + q A +  (4.26) 

ay /aA+ = -qu.  (4.27) 

Equation (4.27) is known as Lippmann’s equation (Brockris and Reddy 1970). Since 
(4.24) is true for r = 2 ,  (4.26) and (4.27) are true in this case. Figure 4 shows the 
surface tension in the case K = 1, E = 1, calculated from (4.11), (4.14) and (4.24), as a 
function of A+/  q. This is known as the electrocapillarity curve, and is similar in shape 
to that calculated by Rosinberg and Blum (1984) for the IPI.  

The IPI satisfies Lippmann’s equation, and the sum rule (4.26) in the form 

af,laU = pZ -  CL^ + qA+ (4.28) 

where pl and pz denote the bulk chemical potential on either side of the interface. 

that the two-particle correlation for the MEB is 
Next we seek a sum rule analogous to (3.15). First we note from (2.25) and (2.31) 

d ( x , ,  xz; y )  = -exp{-~’[(x~ + x2)’ + y21)lpl[(x, + xz+  iy)/2Il2 (4.29) 

where p I  is given by (4.20). Since in the MEB the linear density and the one-dimensional 
pressure have no meaning, (3.15) is inapplicable in its present form. From the exact 
results (4.20), (4.24) and (4.29) we find 

(4.30) 

which we conjecture to be a general property of the MEB. 

2 5  

t -O 50 

Figure 4. The electrocapillarity curve for the metal-electrolyte boundary. 
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Using an analysis due to Jancovici (1982b) we can show from (4.20) and (4.29) 
that p: decays as an oscillating exponential along the wall and as a Gaussian into the 
system. This is qualitatively the same behaviour as that exhibited by the I P I .  

Recall from the discussion of § 3.2 that the usual multipole sum rules (Blum et a1 
1981) must be modified to include the induced charge-screening cloud in the metal. 
Jancovici ( 1982b) has conjectured that if the two-particle correlation decays faster 
than a power law in each direction (as is the case here), then the 2"th multipole moment 
of the charge-screening cloud must vanish. Continuing the argument used in 9 3.2 for 
the 2", n = 0, 1 ,2  moments, this implies the 22m-1, m = 1,2, . . . multipole moments of 
the actual charge-screening cloud must vanish (the 22m multipole moments of the total 
charge-screening cloud then vanishing by symmetry). Thus we expect 

m 

dx' 1 dy(x'+iy)2"'-'p:(x, x';  y )  = -x2"-'pI(x) 
-m 

(4.31) 

for each m = 1,2 , .  , . , A proof of (4.31) is given in the appendix. 

4.4. Alternative derivations 

We have derived the results for the MEB from a 'first-principles' approach-the image 
forces have been included explicitly in the Hamiltonian (2.4). However, it has been 
shown recently that these results can be deduced as a limiting case of the I P I  with an 
impermeable gap of width E introduced between the two background densities and 
v2,  say. (This was conjectured by B Jancovici and checked by M L Rosinberg, private 
communications.) In the limit + CO this region of the IPI  tends to a perfect conductor, 
with the qualification, noted by A Alastuey (private communication), that there is a 
residual potential 4(0) - 4(-co) = -fq(log(2) - f ) .  

Furthermore, the results for both the M E B  and the IPI  can be obtained as limiting 
cases of a model recently presented by Alastuey ,and Lebowitz (1984). 

A further discussion of the relationships between these models will be the subject 
of a forthcoming publication. 
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Appendix 

Here we prove (4.31) by adapting a technique due to Jancovici (1982b, appendix B). 
Denote 

E W 

P z m - ,  = 1. dx'  (x'+iy)2"'-'p:(x, x'; y )  

where p: is given by (4.20) and (4.29). Further denote 

F (  t )  = 1 + ( 7 r 3 ' * 5 / ~ )  exp( t 2  - 2 ~ ~ r )  erfc( t ) .  (-42) 
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Then since 

exp[ - K S  (x' + iy)] (A3) 
d2m-1 

d g 2 m - l  exp[ -~s(x '+ iy) ]=  

we have 

P2,-1 = - ( l K ) 2 ( - K  -1 ) 2m-1 eXp[-2(KE)2-K2(X2-EX)] 

x j E m  dx 'exp(-~~[(x ' ) ' -2~x ' ]}  

exp[iKyt - K ( x + x') t] 
F( t )  x i '  --oc d y I x  -m d t  

exp[-~(x '+ iy)s ]  
oc 

F ( s )  

Noting 

2 ~ 5  ~XP[- (KE)*]  ~ X ' ~ X ~ { - K ' [ ( X ' ) ~ - ~ E X ' ] }  ~ x ~ [ - K x ' ( ~ + s ) ] =  F[;(t+s)]- 1 (A5) 5: 
and 

dy exp[ i~y( t  - ~ ) ] = 2 7 ~ 6 (  t - s ) / K ,  (Ab) 

we have after changing the order of differentiation and integration in (A4) 

exp( -KXS) d2"-l 
[( F[$( t + s)] - 1)6( t - s)]. 

F(s) ds2"'-l 

In the s integration, integrate by parts ( 2 m  - 1) times and then use the delta function 
to combine the t and s integrations. This shows that 

P2,,-, = - l K (  - K - 1 ) 2 m - 1  eXp[ -( KE) '  - K 2 ( X 2  - EX)] 

But by the integration by parts 

exp( - K X t )  d2"-' exp( --Kxt) m 

F ( t )  -( F ( t )  )=O' 

where in (A10) we have made essential use of ( 2 m  - 1) being odd. Substituting (A9) 
and (A10) into (A8) and recalling the definition of p,(x) (4.6) proves (4.31). 
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